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L∞-space (essentially bounded functions)

Let (Ω,Σ, µ) be a �xed measure space.

Def. Measurable function x : Ω→ F essentially bounded, if it
is bounded outside a µ-null set. They form

L∞(µ) := {x : Ω→ Fmeasurable : ∃A∈Σ,µ(A)=0 sup
t∈Ω\A

|x(t)| <∞}

a linear space over F = R,C, where
(x +y)(t) := x(t) +y(t), (λx)(t) := λx(t)

(
pointwise

operations!

)
L∞(µ) consist of functions with �nite essential supremum

‖x‖∞ := inf
µ(A)=0

sup
t∈Ω\A

|x(t)|= min
µ(A)=0

sup
t∈Ω\A

|x(t)|

Rem. ‖x‖∞ = 0 ⇐⇒ µ({t ∈ Ω : x(t) 6= 0}) = 0
def⇐⇒ x

µ-a.e
= 0
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Convention:

We identify functions in L∞(µ) which are equal µ-a.e.

(formally elements of L∞(µ) are equivalence classes for y
µ-a.e.

= x).
Then (L∞(µ), ‖ · ‖∞) is a normed space!

Thm. L∞(µ) with ‖ · ‖∞ is a Banach space.

Proof:

Rem. xn
L∞−→ x ⇐⇒ xn|Ω\A ⇒ x |Ω\A where µ(A) = 0, A ∈ Σ

Ex. If µ is the counting measure then L∞(µ) becomes

B(Ω) := {x : Ω→ F : supt∈Ω |x(t)| <∞} with the norm
‖x‖∞ := supt∈Ω |x(t)| � space of bounded functions

`∞ with the norm ‖x‖∞ = supk∈N |x(k)| (Ω = N)
Fn with the norm ‖x‖∞ = max

k=1,...,n
|x(k)| (Ω = {1, ..., n})
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Classical Banach spaces (cheat sheet)

In the table below p ∈ [1,∞).

Symb. Banach space norm

B(Ω) bounded functions ‖x‖∞ = sup
t∈Ω
|x(t)|

Cb(Ω) continuous and bounded functions ‖x‖∞ = sup
t∈Ω
|x(t)|

C0(Ω) continuous functions, vanishing at ∞ ‖x‖∞ = max
t∈Ω
|x(t)|

Lp(µ) "functions"integrable in the p-th power ‖x‖p =

(∫
Ω

|x(t)|p dµ
) 1

p

L∞(µ) essentially bounded "functions" ‖x‖∞ = inf
µ(A)=0

sup
t∈Ω\A

|x(t)|

`∞ bounded sequences ‖x‖∞ = sup
k∈N
|x(k)|

`p sequences summable in the p-th power ‖x‖p =

( ∞∑
k=1

|x(t)|p
) 1

p

c convergent sequences ‖x‖∞ = max
k∈N
|x(k)|

c0 sequences convergent to zero ‖x‖∞ = max
k∈N
|x(k)|
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Bounded operators

Let (X , ‖ · ‖) and (Y , ‖ · ‖) be �xed normed spaces.

Def. Operators are linear maps T : X → Y . We say that an operator

T is bounded if

∃C­0 ∀x∈X ‖Tx‖ ¬ C‖x‖
(

boundeness

inequality

)
The norm of the operator T is the smallest C in the above inequality

‖T‖ := inf{C : ‖Tx‖ ¬ C‖x‖ for every x ∈ X}

Prop. ‖T‖ = sup‖x‖¬1 ‖Tx‖ = sup‖x‖=1 ‖Tx‖
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Bounded operators

Let (X , ‖ · ‖) and (Y , ‖ · ‖) be �xed normed spaces.

Def. Operators are linear maps T : X → Y . We say that an operator

T is bounded if

∃C­0 ∀x∈X ‖Tx‖ ¬ C‖x‖
(

boundeness

inequality

)
The norm of the operator T is the smallest C in the above inequality

‖T‖ := inf{C : ‖Tx‖ ¬ C‖x‖ for every x ∈ X}

Prop. ‖T‖ = sup‖x‖¬1 ‖Tx‖ = sup‖x‖=1 ‖Tx‖

Proof: Note that ‖Tx‖ ¬ ‖T‖ · ‖x‖, for x ∈ X . Hence

C := sup
‖x‖=1

‖Tx‖ ¬ sup
‖x‖¬1

‖Tx‖ ¬ ‖T‖. (†)

Thus ‖T‖ <∞ =⇒ C <∞. Converesly, if C <∞ for x ∈ X \ {0} we
have ‖ x

‖x‖‖ = 1 and ‖T x
‖x‖‖ ¬ C ⇐⇒ ‖T (x)‖

‖x‖ ¬ C ⇐⇒ ‖Tx‖ ¬ C‖x‖.
Thus ‖T‖ ¬ C . In particular, (†) implies the assertion. �

T is bounded⇐⇒
‖T‖ <∞
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Thm. Let T : X → Y be a linear operator. TFAE:

(1) T is bounded

(2) T is continuous

(3) T is continuous at some point x0 ∈ X

(4) T is continuous at zero

Proof: (1)⇒(2). Bounded operator T is a Lipschitz map:

‖Tx − Ty‖ = ‖T (x − y)‖ ¬ ‖T‖‖x − y‖.
Hence x → y =⇒ Tx → Ty . Accordingly, T is continuous.

(2)⇒(3). Clear (a map is continuous
def⇐⇒ it is continuous at every point)

(3)⇒(4). If xn → 0, then xn + x0 → x0. Hence by continuity of T at x0
Txn = T (xn + x0)− Tx0 −→ Tx0 − Tx0 = 0 = T (0).

That means that T is continuous at zero.

(4)⇒(1). Assume T is unbounded. Then there is {xn}∞n=1 such that

‖xn‖ = 1 and ‖Txn‖ ­ n, for n ∈ N. Thereforfe ‖ xn√
n
‖ = 1√

n
→ 0, so

xn√
n
→ 0, and ‖T xn√

n
‖ = 1√

n
‖Txn‖ ­ 1√

n
· n =

√
n→∞. Hence T is

discontinuous at zero. �
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Thm. (Continuous extension of bounded operators)

A bounded operator T : X0 → Y de�ned on a dense subspace
X0 ⊆ X with values in a Banach space Y extends uniquely to a
bounded operator T : X → Y . Then ‖T‖ = ‖T‖.

Proof: Let x0 ∈ X = X0. Take {xn}∞n=1 ⊆ X0 convergent to x0.
Then {Txn}∞n=1 ⊆ Y is Cauchy in Y , as

‖Txn − Txm‖ ¬ ‖T‖ · ‖xn − xm‖ −→ 0, when n,m→∞.

Since Y is complete, {Txn}∞n=1 converges to some y0 ∈ Y .

The limit y0 does not depend on the choice of {xn}∞n=1.

Putting Tx0 := y0 we get a well-de�ned operator T : X → Y
that extends T . Moreover,

‖Tx0‖ = lim
n→∞
‖Txn‖ ¬ lim

n→∞
‖T‖ · ‖xn‖ = ‖T‖ · ‖x0‖.

Hence T is bounded and ‖T‖ ¬ ‖T‖.
Inequality ‖T‖ ¬ ‖T‖ is clear, because T extends T . �
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Ex. 1 (Integration)

Let X := L1(µ) and Y := F. Then the integral

Tx :=

∫
Ω

x(t) dµ(t), x ∈ L1(µ),

is a bounded operator T : L1(µ)→ F and ‖T‖ = 1:

|Tx | =

∣∣∣∣∫
Ω

x(t) dµ(t)

∣∣∣∣ ¬ ∫
Ω

|x(t)| dµ(t) = 1 · ‖x‖1,

whence ‖T‖ ¬ 1. On the other hand, for any measurable A ⊆ Ω
such that 0 < µ(A) <∞ putting x := 1

µ(A)
1A we get∫

Ω

x dµ =

∫
Ω

1

µ(A)
1A dµ = 1,

that is ‖x‖1 = 1 and |Tx | = 1, so 1 ¬ ‖T‖. Hence ‖T‖ = 1.
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Prz. 2 (Di�erentiation)

Let X := C (1)([0, 1]) be the space of continuously
di�erentiable functions and let Y = C ([0, 1]). Consider these
spaces with the supremum norm. Di�erentiation

(Tx)(t) := x ′(t) x ∈ C (1)([0, 1]), t ∈ [0, 1],

yieds a well-de�ned operator T : X → Y which is unbounded!

Indeed, for xn(t) = tn we have

‖xn‖∞ = 1 oraz ‖Txn‖ = ‖x ′n‖∞ = sup
t∈[0,1]

|ntn−1| = n→∞.

The standard norm on C (1)([0, 1]) is given by the formula

‖x‖1 = ‖x‖∞ + ‖x ′‖∞ = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|x ′(t)|.

With this norm on X the operator T is bounded and ‖T‖ = 1.
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Ex. 3 (Multiplication operator)

Let X = Y = Lp(µ), 1 ¬ p <∞. Multiplication by a ∈ L∞(µ)

(Tx)(t) := a(t)x(t), x ∈ Lp(µ), t ∈ Ω,

de�nes a bounded operator T : Lp(µ)→ Lp(µ) and ‖T‖ = ‖a‖∞.

Indeed, the inequality ‖T‖ ¬ ‖a‖∞ follows from

‖Tx‖p =
(∫

Ω
|a(t)x(t)|p dµ

) 1
p

¬
(∫

Ω
‖a‖p∞ · |x(t)|p dµ

) 1
p = ‖a‖∞ · ‖x‖p.

Put An := {t : |a(t)|p ­ ‖a‖p∞ − 1/n} and xn := 1
µ(An)1/p

1An .

Then ‖xn‖p = 1 and

‖Txn‖pp = 1
µ(An)

·
∫
An
|a(t)|p dµ

­ 1
µ(An)

·
∫
An
‖a‖p∞ − 1

n
dµ = ‖a‖p∞ − 1

n
.

Hence ‖Txn‖p → ‖a‖∞ and so ‖T‖ ­ ‖a‖∞.
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Ex. 4 (Composition operator)

Let X = Y = C (Ω) for a comapct space Ω and let ϕ : Ω→ Ω be
a continous map. The composition

(Tx)(t) := x(ϕ(t)), x ∈ C (Ω), t ∈ Ω,

de�nes a bounded operator T : C (Ω)→ C (Ω) with ‖T‖ = 1.

Indeed, the inequality ‖T‖ ¬ 1 follows from

‖Tx‖∞ = supt∈Ω |x(ϕ(t))| = sups∈ϕ(Ω)⊆Ω |x(s)|
¬ sups∈Ω |x(s)| = ‖x‖∞.

Taking x ≡ 1 (function constantly equal to 1) we get ‖x‖∞ = 1
and ‖Tx‖∞ = ‖x‖∞ = 1. Hence 1 ¬ ‖T‖. Thus ‖T‖ = 1.

Ex. 5 (Composition operator on Lp)

Let X = Y = Lp[0, 1], for p ­ 1 and ϕ(t) = t2. Show that the
composition (Tx)(t) := x(ϕ(t)) de�nes a bounded operator

T : Lp[0, 1]→ Lp[0, 1] with ‖T‖ = 2
1
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