Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 4 L^{∞} -spaces. Bounded operators.

math.uwb.edu.pl/~zaf/kwasniewski/teaching

L^{∞} -space (essentially bounded functions)

Let (Ω, Σ, μ) be a fixed measure space.

Def. Measurable function $x : \Omega \to \mathbb{F}$ essentially bounded, if it is bounded outside a μ -null set. They form

 $L^\infty(\mu) := \{ x: \Omega \to \mathbb{F} \text{ measurable}: \ \exists_{A \in \Sigma, \mu(A) = 0} \sup_{t \in \Omega \setminus A} |x(t)| < \infty \}$

a linear space over $\mathbb{F} = \mathbb{R}, \mathbb{C}$, where $(x+y)(t) := x(t) + y(t), \quad (\lambda x)(t) := \lambda x(t) \qquad \left(\begin{array}{c} \mathsf{pointwise} \\ \mathsf{operations!} \end{array} \right)$

 $L^{\infty}(\mu)$ consist of functions with finite essential supremum $\|x\|_{\infty} := \inf_{\mu(A)=0} \sup_{t \in \Omega \setminus A} |x(t)| = \min_{\mu(A)=0} \sup_{t \in \Omega \setminus A} |x(t)|$

 $\textbf{Rem.} \ \|x\|_{\infty} = 0 \iff \mu(\{t \in \Omega : x(t) \neq 0\}) = 0 \iff x \stackrel{\mu\text{-a.e}}{=} 0$

Convention:

Proof: 🔑

We identify functions in $L^{\infty}(\mu)$ which are equal μ -a.e. (formally elements of $L^{\infty}(\mu)$ are equivalence classes for $y \stackrel{\mu\text{-a.e.}}{=} x$). Then $(L^{\infty}(\mu), \|\cdot\|_{\infty})$ is a normed space!

Thm. $L^{\infty}(\mu)$ with $\|\cdot\|_{\infty}$ is a Banach space.

Rem. $x_n \xrightarrow{L^{\infty}} x \iff x_n|_{\Omega \setminus A} \Rightarrow x|_{\Omega \setminus A}$ where $\mu(A) = 0, A \in \Sigma$

Ex. If μ is the counting measure then $L^{\infty}(\mu)$ becomes

- $B(\Omega) := \{x : \Omega \to \mathbb{F} : \sup_{t \in \Omega} |x(t)| < \infty\}$ with the norm $||x||_{\infty} := \sup_{t \in \Omega} |x(t)|$ space of bounded functions
- ℓ^∞ with the norm $\|x\|_\infty = \sup_{k\in\mathbb{N}} |x(k)|$ $(\Omega = \mathbb{N})$
- \mathbb{F}^n with the norm $\|x\|_{\infty} = \max_{k=1,...,n} |x(k)|$ $(\Omega = \{1,...,n\})$

Classical Banach spaces (cheat sheet)

In the table below $p\in [1,\infty).$

Symb.	Banach space	norm
$B(\Omega)$	bounded functions	$\ x\ _{\infty} = \sup_{t \in \Omega} x(t) $
$C_b(\Omega)$	continuous and bounded functions	$\frac{t\in\Omega}{\ x\ _{\infty}=\sup_{t\in\Omega} x(t) }$
$C_0(\Omega)$	continuous functions, vanishing at ∞	$\ x\ _{\infty} = \max_{t \in \Omega} x(t) $
$L^p(\mu)$	"functions"integrable in the <i>p</i> -th power	$\ x\ _p = \left(\int\limits_{\Omega} x(t) ^p d\mu\right)^{\frac{1}{p}}$
$L^{\infty}(\mu)$	essentially bounded "functions"	$\ x\ _{\infty} = \inf_{\mu(A)=0} \sup_{t\in\Omega\setminus A} x(t) $
ℓ^{∞}	bounded sequences	$\ x\ _{\infty} = \sup_{k \in \mathbb{N}} x(k) $
ℓP	sequences summable in the <i>p</i> -th power	$\ x\ _{ ho}=\left(\sum\limits_{k=1}^{\infty} x(t) ^{ ho} ight)^{rac{1}{ ho}}$
С	convergent sequences	$\ x\ _{\infty} = \max_{k \in \mathbb{N}} x(k) $
<i>c</i> ₀	sequences convergent to zero	$\ x\ _{\infty} = \max_{k \in \mathbb{N}} x(k) $

Bounded operators

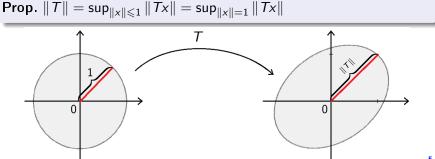
Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be fixed normed spaces.

Def. Operators are linear maps $T: X \to Y$. We say that an operator T is **bounded** if (boundeness inequality)

 $\exists_{C \ge 0} \forall_{x \in X} \quad \|Tx\| \leqslant C \|x\|$

The norm of the operator T is the smallest C in the above inequality

 $||T|| := \inf\{C : ||Tx|| \leq C ||x|| \text{ for every } x \in X\}$



Bounded operators

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be fixed normed spaces.

Def. Operators are linear maps $T : X \to Y$. We say that an operator T is **bounded** if

 $\exists_{C \ge 0} \forall_{x \in X} \quad ||Tx|| \leqslant C ||x|| \qquad \left(\begin{array}{c} \text{boundeness} \\ \text{inequality} \end{array}\right)$

The norm of the operator T is the smallest C in the above inequality

 $||T|| := \inf\{C : ||Tx|| \le C||x|| \text{ for every } x \in X\}$

Prop. $||T|| = \sup_{||x|| \leq 1} ||Tx|| = \sup_{||x||=1} ||Tx||$

Proof: Note that $||Tx|| \leq ||T|| \cdot ||x||$, for $x \in X$. Hence

$$C := \sup_{\|x\|=1} \|Tx\| \leqslant \sup_{\|x\| \leqslant 1} \|Tx\| \leqslant \|T\|.$$
 (†)

Thus $||T|| < \infty \Longrightarrow C < \infty$. Converesly, if $C < \infty$ for $x \in X \setminus \{0\}$ we have $||\frac{x}{\|x\|}|| = 1$ and $||T\frac{x}{\|x\|}|| \le C \iff \frac{||T(x)||}{\|x\|} \le C \iff ||Tx|| \le C ||x||$. Thus $||T|| \le C$. In particular, (†) implies the assertion.

 $\begin{array}{c} T \text{ is bounded} \\ \|T\| < \infty \end{array}$

Thm. Let $T : X \rightarrow Y$ be a linear operator. TFAE:

- T is bounded
- I is continuous
- T is continuous at zero

Proof: (1) \Rightarrow (2). Bounded operator T is a Lipschitz map: $||Tx - Ty|| = ||T(x - y)|| \le ||T|| ||x - y||.$ Hence $x \to y \Longrightarrow Tx \to Ty$. Accordingly, T is continuous. (2) \Rightarrow (3). Clear (a map is continuous $\stackrel{def}{\iff}$ it is continuous at every point) $(3) \Rightarrow (4)$. If $x_n \to 0$, then $x_n + x_0 \to x_0$. Hence by continuity of T at x_0 $Tx_n = T(x_n + x_0) - Tx_0 \longrightarrow Tx_0 - Tx_0 = 0 = T(0).$ That means that T is continuous at zero. (4) \Rightarrow (1). Assume T is unbounded. Then there is $\{x_n\}_{n=1}^{\infty}$ such that $||x_n|| = 1$ and $||Tx_n|| \ge n$, for $n \in \mathbb{N}$. Thereforfe $||\frac{x_n}{\sqrt{n}}|| = \frac{1}{\sqrt{n}} \to 0$, so $\frac{x_n}{\sqrt{n}} \to 0$, and $\|T\frac{x_n}{\sqrt{n}}\| = \frac{1}{\sqrt{n}} \|Tx_n\| \ge \frac{1}{\sqrt{n}} \cdot n = \sqrt{n} \to \infty$. Hence T is

discontinuous at zero.

Thm. (Continuous extension of bounded operators)

A bounded operator $T : X_0 \to Y$ defined on a dense subspace $X_0 \subseteq X$ with values in a Banach space Y extends uniquely to a bounded operator $\overline{T} : X \to Y$. Then $||T|| = ||\overline{T}||$.

Proof: Let $x_0 \in X = \overline{X_0}$. Take $\{x_n\}_{n=1}^{\infty} \subseteq X_0$ convergent to x_0 . Then $\{Tx_n\}_{n=1}^{\infty} \subseteq Y$ is Cauchy in Y, as

$$\|Tx_n - Tx_m\| \leq \|T\| \cdot \|x_n - x_m\| \longrightarrow 0, \quad \text{when } n, m \to \infty.$$

Since Y is complete, $\{Tx_n\}_{n=1}^{\infty}$ converges to some $y_0 \in Y$. The limit y_0 does not depend on the choice of $\{x_n\}_{n=1}^{\infty}$. Putting $\overline{T}x_0 := y_0$ we get a well-defined operator $\overline{T} : X \to Y$ that extends T. Moreover,

$$\|\overline{T}x_0\| = \lim_{n \to \infty} \|Tx_n\| \leq \lim_{n \to \infty} \|T\| \cdot \|x_n\| = \|T\| \cdot \|x_0\|.$$

Hence \overline{T} is bounded and $\|\overline{T}\| \leq \|T\|$.
Inequality $\|T\| \leq \|\overline{T}\|$ is clear, because \overline{T} extends T .

Ex. 1 (Integration)

Let $X := L^1(\mu)$ and $Y := \mathbb{F}$. Then the integral

$$Tx := \int_{\Omega} x(t) d\mu(t), \qquad x \in L^1(\mu),$$

is a bounded operator $T: L^1(\mu) \to \mathbb{F}$ and ||T|| = 1:

$$|Tx| = \left|\int_{\Omega} x(t) d\mu(t)\right| \leq \int_{\Omega} |x(t)| d\mu(t) = 1 \cdot ||x||_1,$$

whence $||T|| \leq 1$. On the other hand, for any measurable $A \subseteq \Omega$ such that $0 < \mu(A) < \infty$ putting $x := \frac{1}{\mu(A)} \mathbb{1}_A$ we get

$$\int_{\Omega} x \, d\mu = \int_{\Omega} \frac{1}{\mu(A)} \mathbb{1}_A \, d\mu = 1,$$

that is $||x||_1 = 1$ and |Tx| = 1, so $1 \leq ||T||$. Hence ||T|| = 1.

Prz. 2 (Differentiation)

Let $X := C^{(1)}([0, 1])$ be the space of continuously differentiable functions and let Y = C([0, 1]). Consider these spaces with the supremum norm. Differentiation

$$(Tx)(t) := x'(t)$$
 $x \in C^{(1)}([0,1]), t \in [0,1],$

yieds a well-defined operator $T : X \to Y$ which is **unbounded**! Indeed, for $x_n(t) = t^n$ we have

$$||x_n||_{\infty} = 1$$
 oraz $||Tx_n|| = ||x'_n||_{\infty} = \sup_{t \in [0,1]} |nt^{n-1}| = n \to \infty.$

The standard norm on $C^{(1)}([0, 1])$ is given by the formula $\|x\|_1 = \|x\|_{\infty} + \|x'\|_{\infty} = \max_{t \in [0, 1]} |x(t)| + \max_{t \in [0, 1]} |x'(t)|.$

With this norm on X the operator T is bounded and $\|T\|=1$. T

Ex. 3 (Multiplication operator) Let $X = Y = L^{p}(\mu)$, $1 \le p < \infty$. Multiplication by $a \in L^{\infty}(\mu)$ (Tx)(t) := a(t)x(t), $x \in L^{p}(\mu)$, $t \in \Omega$,

defines a bounded operator $T: L^p(\mu) \to L^p(\mu)$ and $||T|| = ||a||_{\infty}$. Indeed, the inequality $||T|| \leq ||a||_{\infty}$ follows from $||Tx||_{p} = \left(\int_{\Omega} |a(t)x(t)|^{p} d\mu\right)^{\frac{1}{p}}$ $\leq \left(\int_{\Omega} \|a\|_{\infty}^{p} \cdot |x(t)|^{p} d\mu\right)^{\frac{1}{p}} = \|a\|_{\infty} \cdot \|x\|_{p}.$ Put $A_n := \{t : |a(t)|^p \ge ||a||_{\infty}^p - 1/n\}$ and $x_n := \frac{1}{\mu(A_n)^{1/p}} \mathbb{1}_{A_n}$. Then $||x_p||_p = 1$ and $||Tx_n||_p^p = \frac{1}{\mu(A_n)} \cdot \int_{A_n} |a(t)|^p d\mu$ $\geq \frac{1}{\mu(A_n)} \cdot \int_{A_n} \|a\|_{\infty}^p - \frac{1}{n} d\mu = \|a\|_{\infty}^p - \frac{1}{n}.$

Hence $||Tx_n||_p \to ||a||_\infty$ and so $||T|| \ge ||a||_\infty$.

Ex. 4 (Composition operator)

Let $X = Y = C(\Omega)$ for a comapct space Ω and let $\varphi : \Omega \to \Omega$ be a continous map. The **composition**

$$(Tx)(t) := x(\varphi(t)), \qquad x \in C(\Omega), t \in \Omega,$$

defines a bounded operator $T : C(\Omega) \to C(\Omega)$ with ||T|| = 1. Indeed, the inequality $||T|| \leq 1$ follows from

$$\begin{split} \|Tx\|_{\infty} &= \sup_{t \in \Omega} |x(\varphi(t))| = \sup_{s \in \varphi(\Omega) \subseteq \Omega} |x(s)| \\ &\leq \sup_{s \in \Omega} |x(s)| = \|x\|_{\infty}. \end{split}$$

Taking $x \equiv 1$ (function constantly equal to 1) we get $||x||_{\infty} = 1$ and $||Tx||_{\infty} = ||x||_{\infty} = 1$. Hence $1 \leq ||T||$. Thus ||T|| = 1.

Ex. 5 (Composition operator on L^p) Let $X = Y = L^p[0,1]$, for $p \ge 1$ and $\varphi(t) = t^2$. Show that the composition $(Tx)(t) := x(\varphi(t))$ defines a bounded operator $T : L^p[0,1] \to L^p[0,1]$ with $||T|| = 2^{\frac{1}{p}}$.