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L*>°-space (essentially bounded functions)
Let (2, X, i) be a fixed measure space.

Def. Measurable function x : Q — I essentially bounded, if it
is bounded outside a p-null set. They form

L%(p) := {x : Q@ — F measurable : Jacy ua—0 sup |x(t)| < oo}
teQ\A

a linear space over F = R, C, where

(V) = x(B)+x(8), (1) = x(e)  ( Dome )

L*>(p) consist of functions with finite essential supremum
Ixlloo = inf sup |x(t)]= min sup |x(¢)|
#( (A)=0 teq\A

)=0 tcQ\A It teQ

Rem. [|x[l =0 <= p({t € Q: x(t) #0}) =0 &5 x =0 |
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Convention:
We identify functions in L*°(x) which are equal p-a.e.

(formally elements of L>(y1) are equivalence classes for y "= x).
Then (L°°(p), || - ||o0) is @ normed space!

Thm. L>(u) with || - || is @ Banach space.

Proof:

- IS
Rem. x, — x <= Xnlo\a = X|\a Where 1(A) =0, Ac X

Ex. If 11 is the counting measure then L*°(u) becomes

o B(Q) :={x:Q — F :sup,cq|x(t)] < oo} with the norm
|X||oo := supseq [x(t)] — space of bounded functions

o (> with the norm ||x||oc = supycy |x(k)| (Q=N)

o F" with the norm ||x||s = max Ix(k)] (Q=A{1,...,n})

'''''
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Classical Banach spaces (cheat sheet)

In the table below p € [1, 0).

Symb.| Banach space norm

B(£2) | bounded functions 1] oo = sup |x(t)]

Cp(R2) | continuous and bounded functions 1] oo = sup |x(t)]

Co(R2) | continuous functions, vanishing at co [Ix]| oo = ma§>2< |x(¢)]
te

P
LP(u) | "functions"integrable in the p-th power x|l = (f |x(t)|P du)
Q

L>°(u)| essentially bounded "functions" 1] oo = (I/X\)f sup [x ()]
£ bounded sequences [Ix]|oo = sup \x(k)|
keN

o ’

g sequences summable in the p-th power Ix]lp = (Z |x(t)p)
t = k

c convergent sequences [1%]] 0o max |x (k)|
o sequences convergent to zero 1] oo = max |x(k)|

€
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Bounded operators

Let (X, |- |]) and (Y, ]| - ||) be fixed normed spaces.

Def. Operators are linear maps T : X — Y. We say that an operator

boundeness

inequality

The norm of the operator T is the smallest C in the above inequality
IIT| :=inf{C : || Tx|| < C||x|| for every x € X}

T is bounded

if

dexo Veex

1Tl < Clix]l

(

Prop. || T|| = supjx<1 | Tx|| = supjxj=1 | x|

J

1 /////
/| /_\/

7
G

Kj
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Bounded operators

Let (X, |- |]) and (Y, ]| - ||) be fixed normed spaces.

Def. Operators are linear maps T : X — Y. We say that an operator
T is bounded if

E|C>0 Viex HTXH < CHXH ( boundeness )

inequality
The norm of the operator T is the smallest C in the above inequality
IIT| :=inf{C : || Tx|| < C||x|| for every x € X}
[ T is bounded <:>]

Prop. || T|| = supjx<1 | Tx|| = supjx=1 | x| I Tl < oo

Proof: Note that || Tx|| < || T|| - ||x||, for x € X. Hence

C:= sup [[Tx]| < sup [[Tx| <|T]. (1)

[Ix[I=1 lIxll<1
Thus || T|| < co = C < 0. Converesly, if C < oo for x € X \ {0} we
have ||zl = Land | T < € = IO < € = || 7| < C|x].
Thus || T|| < C. In particular, (1) implies the assertion. [ |
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Thm. Let T : X — Y be a linear operator. TFAE:
@ T is bounded

@ T is continuous

@ T is continuous at some point xg € X

@ T is continuous at zero

Proof: (1)=-(2). Bounded operator T is a Lipschitz map:
[Tx =Tyl =T =) <[ Tllx =yl
Hence x — y = Tx — Ty. Accordingly T is continuous.
(2)=(3). Clear (a map is continuous <= it is continuous at every point)

(3)=(4). If x, — 0, then x, + xo — xp. Hence by continuity of T at xo
Txp=T(xn+x)— Txo — Txo — Txg =0 = T(0).

That means that T is continuous at zero.

(4)=(1). Assume T is unbounded. Then there is {x,}°°; such that

|xal| =1 and || Tx,|| = n, for n € N. Thereforfe HﬁH = % — 0, so
\75_’0 and HT f||Tx,,H n—f—>oo Hence T is
discontinuous at zero |
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Thm. (Continuous extension of bounded operators)

A bounded operator T : Xy — Y defined on a dense subspace
Xo € X with values in a Banach space Y extends uniquely to a
bounded operator T : X — Y. Then | T|| = || T||.

Proof: Let x € X = X;. Take {x,}52; C X; convergent to xo.
Then {Tx,}5°; C Y is Cauchy in Y, as

I Tx0 = Txmll < IT| - 1o — Xu|| — 0, when n,m — oc.
Since Y is complete, { Tx,}%2; converges to some yp € Y os
The limit yp does not depend on the choice of {x,};2;. (2

Putting Txo := yp we get a well-defined operator T : X — Y
that extends T. Moreover,

ITxoll = lim I Txall < lim (1T~ xall = 1T - lIx0]]-

Hence T is bounded and || T|| < || T|.
Inequality | T|| < || T|| is clear, because T extends T. W
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Ex. 1 (Integration)
Let X := L'() and Y :=F. Then the integral

Toim [ x(O)dult),  x e L(u)
Q
is a bounded operator T : [*(y) — F and || T|| = 1:

| Tx| =

| x(®) dute

< /Q\x(tn du(t) = 1- x|,

whence || T|| < 1. On the other hand, for any measurable A C Q

such that 0 < u(A) < oo putting x := ﬁ]l/\ we get

1
xdu:/—]l du=1,
/Q a 1(A) A

thatis ||x||y =1 and |Tx| =1,s0 1 < | T|. Hence | T| = 1.
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Prz. 2 (Differentiation)

Let X := C)([0,1]) be the space of continuously
differentiable functions and let Y = C([0,1]). Consider these
spaces with the supremum norm. Differentiation

(Tx)(t) := X'(¢t) X € C(l)([O, 1]),t € [0, 1],

yieds a well-defined operator T : X — Y which is unbounded!
Indeed, for x,(t) = t" we have

IXnlloo =1 oraz || Tx,|| = ||X.]]ec = sup ]nt"’ll =n — o0.
te[0,1]

The standard norm on C)([0, 1]) is given by the formula

— / _ /
Il =l + Il = mase x(8)] + max X (1)L

With this norm on X the operator T is bounded and || T|| = 1.

10/12



Ex. 3 (Multiplication operator)

Let X = Y = LP(u), 1 < p < oo. Multiplication by a € L>(u)
(Tx)(t) == a(t)x(t),  x€lP(u),teq,

defines a bounded operator T : LP(u) — LP() and || T|| = ||a]|co-

Indeed, the inequality || T|| ||a||oo follows from
1 Txlls = (Jo la(£)x(2)[P dia)?

(fn lalze - (OI7 dn)? = llaloe - ]
Put A, = {l’i |a( )|p/ HaHé’o—l/n} and x, = 1a,
Then ||x,[|, =1 and
||TXn||p = /14,, A, |p d,u
> 'fAn a2, — L dp = |a]|5, — L.

Hence || Txa|, — [|alloc and so || ]| > [|a|o.

T =

1
H(An)t/P
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Ex. 4 (Composition operator)

Let X = Y = C(Q) for a comapct space Q and let ¢ : Q — Q be
a continous map. The compaosition

(Tx)(t) := x(e(1)), x € C(Q),teq,

defines a bounded operator T : C(2) — C(2) with | T|| = 1.
Indeed, the inequality || T|| < 1 follows from
[ Tx[loo = supteq [X(2(2))] = supsep(@)ca [X(5)]
< supacq Ix(5)] = x|

Taking x = 1 (function constantly equal to 1) we get ||x||o =1
and || Tx||oo = ||X||oc = 1. Hence 1 < || T||. Thus | T|| = 1.

N
Ex. 5 (Composition operator on LP)
Let X = Y = LP[0,1], for p > 1 and ¢(t) = t>. Show that the
composition (Tx)(t) := x(¢(t)) defines a bounded operator
T : L7[0,1] — LP[0,1] with || T|| = 25. 2
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